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A recently developed filter diagonalization technique (Ber. Bunsenges. Phys. Chem.
101, 400, 1997), based on the optimal approximation of the Green operator in a finite
Lanczos subspace, is investigated in relation to its ability to avoid the phenomenom
of ghosting which complicates the interpretation of the regular Lanczos spectrum as
the order of the subspace is increased. The origin of this potentially useful property
of the algorithm is explained with reference to one- and two-dimensional applica-
tions. c© 1998 Academic Press
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I. INTRODUCTION

The Lanczos algorithm is perhaps the most commonly used technique for iteratively
determining the eigenvalues of large sparse real-symmetric or complex-Hermitian matrices
[1–3]. In the context of chemical physics, it has found wide application in the determination
of vibrational eigenstates for molecules up to high excitation energies [4–11]. However, as
is well known, the algorithm is not a “black box,” but rather requires some experience and
care to correctly identify the true eigenvalues of the Hamiltonian. The problem is that once
some eigenvalues of the matrix have converged, the subsequent vectors in the Lanczos sub-
space tend to take on unwanted components in the direction of the converged eigenvectors,
so that the subspace loses strict orthogonality. Ultimately, the algorithm starts to produce
“ghost” eigenvalues, i.e., duplicates of true eigenvalues which are stable with respect to
the size of the subspace, and also spurious eigenvalues which are unstable with respect to
the size of the subspace (for convenience, we refer to this generally as the “ghosting” prob-
lem). The origin of this difficulty is the fact that the Lanczos algorithm uses a three-term
recursion to build up the orthogonal subspace, which does not guarantee strict orthogona-
lity due to numerical error. There are two ways out of this. The first approach is to enforce
strict orthogonality by explicitly orthogonalizing each new vector against all of the previous
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vectors. In this way the ghosting problem is eliminated, but at a very high price since it will
be necessary either (a) to store all of the Lanczos vectors in core memory, placing a severe
restriction on the size of the subspace which can be handled, or (b) to write them to disk and
then read them sequentially back into memory for reorthogonalization at each iteration, in
which case the speed of the calculation is severely limited by the read/write operations. A
second approach takes advantage of the error analysis of Paige (see, e.g., Ref. [3]), which
demonstrates that the eigenvalues which are duplicated in the presence of ghosting are never-
theless accurate. In this latter approach, one simply lives with the ghosting [2] and devises
a means of sorting out the true eigenvalues from the spurious ones. Hence, some care and
time is required on the part of the user to sort out precisely which are the true eigenvalues.

A characteristic property of the Lanczos algorithm is that it converges eigenvalues in
the sparse regions of the spectrum quickly and only slowly resolves the eigenvalues in
the dense regions as the order of the subspace is increased. This has motivated alternative
approaches to computing vibrational eigenvalues at higher energies, where the spectrum is
dense. One such approach is to use a spectral transform in order to make this property of the
Lanczos algorithm work in the user’s favor. The idea is to use an operator which is a function
of H and has eigenvalues of greatest magnitude and separation at the energy of interest,
for example, a sharply peaked Gaussian [7, 9] or a Green operator [10]. An alternative
approach is that of filter diagonalization (FD), first introduced by Neuhauser [12, 13]. In
the FD approach, one calculates a set of filtered states with mean energies spaced evenly
through a nominated energy window. These filtered states are then used as a basis in which
to represent and diagonalize the Hamiltonian. The method has been used successfully by a
number of different groups [13–17].

In our recent work, we have introduced a new FD approach which is based on the
Lanczos algorithm [17]. The idea is to generate filtered states within a nominated energy
window by approximating the action of the Green operator at different energies spaced
through the window. The filtered states are generated within a Lanczos subspace of order
k by applying the minimum residual (MINRES) algorithm of Paige and Saunders [18].
The subsequent representation of the Hamiltonian and the overlap matrices in terms of
this filtered (non-orthogonal) basis are trivially generated using the tridiagonal matrixTk,
which is the representation ofH in the Lanczos basis, and the residualβk+1. Solution
of the generalized eigenvalue problem then yields approximations to the true eigenval-
ues of the Hamiltonian. The main storage cost of the method is just that of the primitive
Lanczos algorithm—two real vectors—and the Lanczos subspace need be generated only
once in order forall eigenvalues to be obtained. In the earlier work [17], it was shown that
the MINRES filter diagonalization (MFD) method has two very attractive properties: (a)
at high energies, where the Lanczos eigenvalues are not converged, it gives significantly
improved estimates of the true eigenvalues and eigenvectors, and (b) at lower energies,
where the Lanczos algorithm rapidly converges the eigenstates and starts to produce ghost
and duplicate eigenvalues, the MFD algorithm produces only true eigenvalues and eigen-
vectors. It is the elimination of the ghosting problem which we seek to further investigate
in this paper. In Section II, we consider a one-dimensional Morse oscillator problem to
illustrate the MFD method and demonstrate its capacity for removing ghost and duplicate
eigenvalues. In Section III, we show that the reason for this behavior is a very fortunate
coincidence of the properties of the MINRES algorithm in combination with those of sin-
gular value decomposition. Finally, in Section IV, we present results of a more challenging
application to a special test matrix first introduced by Wyatt [19].
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II. THE MFD ALGORITHM

We begin with a brief summary of the MFD algorithm (for further details see Ref. [17]).
As described above, the basic idea of filter diagonalization is to compute a set of filtered
states in a given energy window and then use these states as a basis for diagonalizing the
Hamiltonian to obtain the true eigenvalues in this region of the spectrum. In principle, one
might expect to have to carry out a separate filtering calculation for each different energy;
however, Wall and Neuhauser [13] showed that this is not necessary if one uses time-to-
energy Fourier filtering. In the MFD approach, we use an approximation to the action of the
Green operatorG(E) = (H − E)−1 in order to create filtered states from an initial random
vector r . This is achieved by generating a Lanczos subspace from an initial seed vector
v1 = r/|r | and solving the linear system of equations

(H − Ej ) z(Ej ) = v1 (1)

optimally within the given Lanczos subspace of orderk. This is achieved by using the
MINRES equations of Paige and Saunders [18] to determine the linear combination of
Lanczos basis vectorsv1, . . . , vk which minimizes the residual norm for the linear system.

There are two key observations which make the MFD calculation very convenient and
efficient. The first is that the Lanczos subspace obtained from a given seed vectorv1 is
independent of the shift energyEj . When large basis sets are involved, the compute time in
a Lanczos calculation is dominated by the matrix-vector multiples required to generate the
Lanczos basis vectors. Hence, this fact is very convenient since one need only generate the
Lanczos subspaceonceand then solve the MINRES equations for a series of shift energies to
obtain the expansion coefficients of the filtered states in terms of the Lanczos basis vectors.
Hence, we have the solution

z(Ej ) =
k∑

i =1

y j
i vi = Vky j , j = 1, m, (2)

whereVk is a matrix whose columns are the Lanczos basis vectors,y j is the representation
of z(Ej ) in the Lanczos basis, andm is the number of filtered states to be computed in a
given energy window. The second observation is that although it is possible to explicitly
construct the filtered states{z(Ej ), j = 1, m} in the primary basis at a storage cost of
3m+ 2 vectors, this is not necessary if just eigenvalues are sought. We need only the
representations{y j , j = 1, m} in the Lanczos subspace. This is because the Hamiltonian
and overlap matrices for they j vectors (and indeed any set of vectors in the Lanczos
subspace) are simply evaluated by invoking orthonormality of the Lanczos basis vectors
and using the tridiagonal representationTk of the Hamiltonian in the Lanczos subspace.
The solution of the eigenvalue problem proceeds by standard methods. Firstly the non-
orthogonal basis{y j , j = 1, m} is contracted to form an orthonormal set{ui , i = 1, n} using
singular value decomposition [3, 20]. Then the representation of the Hamiltonian in this
orthonormal basis is diagonalized to yield approximationsxi to the true eigenvectors, still
represented in the Lanczos subspace, and their corresponding eigenvaluesεi . If the Lanczos
basis is sufficiently large, the eigenvalues thus obtained will be excellent approximations to
the true eigenvalues in the window of interest. One also obtains some eigenvalues outside
the window which can be discarded since they will be less well converged [12, 13]. In
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principle, the eigenvectors can be constructed in the primary basis by regenerating the
Lanczos subspace and accumulating the linear combinations prescribed by the vectorsxi

at a storage cost ofm + 2 vectors.
In order to illustrate the MINRES filter diagonalization method described above, we begin

with a simple problem involving a one-dimensional Morse potential. The Hamiltonian is thus

H = − h̄2

2µ

∂2

∂R2
+ De

[
1 − e−α(R−Re)

]2
, (3)

the eigenvalues of which are given analytically given by

En =
(

n + 1

2

)
h̄

√
2Deα2

µ
−
(

n + 1

2

)2 h̄2α2

2µ
. (4)

The parameters in Eqs. (3) and (4) were chosen to be

µ = 45.0 a.m.u.

De = 1.50 eV

α = 0.65a−1
0

Re = 2.00a0,

(5)

for which one obtains 146 bound states. We utilized a primary basis consisting of 812
evenly spaced sinc-function discrete variable representation (DVR) points [21] in the re-
gion 0.50< R< 25.0 Bohr. A random vector was normalized and used as the initial Lanczos
vector, and a subspace of 2000 vectors was built up. DiagonalizingT2000 (the tridiagonal
representation ofH ) yields the eigenvalues corresponding to all 146 bound states, plus
many duplicates thereof. Additionally, in the energy region less thanDe, there are some 10
spurious eigenvalues which do not match any of the true eigenvalues. The ghost eigenval-
ues appeared at 0.072272, 0.869976, 0.897207, 1.117298, 1.206483, 1.225578, 1.333112,
1.360057, 1.446329, and 1.453180 eV. These results are summarized in Figs. 1 and 2. In
Fig. 1, the results are expressed in terms of stick spectra, where the heights of the sticks are
scaled to reflect the dispersion associated with the corresponding eigenvector (in the case
where duplicate eigenvalues occured, thesmallestdispersion is plotted): a poorly converged
eigenvector has a large dispersion and the height of the stick is reduced accordingly (see
the figure caption). The upper frames of Figs. 1a and 1b indicate the eigenvalues obtained
from the Lanczos diagonalization (solid lines represent true eigenvalues, while dotted lines
represent spurious eigenvalues). For comparison we also performed two MINRES filter
diagonalizations based on the same Lanczos subspace, the results of which are summarized
in the lower frames of Figs. 1a and 1b. The MFD calculations in the first window (Fig. 1a)
covered the energy region up to 1.1 eV and utilizedNMFD = 400 evenly spaced energy shifts
to yield 62 true eigenvalues. The dispersions of the associated MFD eigenvectors were gen-
erally much smaller than those of the Lanczos eigenvectors, which had been degraded due
to ghosting effects, and no ghost or duplicate eigenvalues arose from the MFD calculation.
For the second window (Fig. 1b), covering energies up to threshold,NMFD = 500 energy
shifts were used in the region lying from 1.0 to 1.494 eV, yeilding 75 true eigenvalues. It is
clear that for the simple Lanczos algorithm, the dispersions of eigenvectors associated with
true eigenvales lying near the ghost states tend to be large. Figure 2 indicates the extent of
duplication of the Lanczos eigenvalues for this subspace of 2000 basis vectors by plotting
multiplicities as a function of the eigenenergy.
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FIG. 1. Comparison of purity of eigenvalues (a) at low energies and (b) at high energies from the simple
Lanczos and MINRES filter diagonalization (MFD) for a Lanczos subspace of 2000 vectors for one-dimensional
Morse potential. Here,Y = e−4.0∗Dis with the dispersion (Dis/eV). The dashed lines refer to the spurious values.

We note that the estimates of dispersions are carried out within the Lanczos subspace
using standard formulae. In principle, the dispersion is more precisely determined directly
from the eigenvector in the primary representation, but this will obviously be inconvenient
for problems with very large basis sets. However, estimates of such quantities based on the
Lanczos subspace representation ofH are generally quite reliable [22]. Deviations of the
MFD eigenvalues from the analytical eigenvalues of Eq. (4) were less than 1.0× 10−7 eV.

III. CONVERGENCE OF THE FILTERED STATES

AND THE ELIMINATION OF GHOSTING

In this section, we examine the reason why ghost and spurious eigenvalues which appear
in the Lanczos spectrum are eliminated by the MFD algorithm. The first clue as to how
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FIG. 2. Plot of the multiplicity of duplicated eigenvalues in the Lanczos spectrum for the Morse oscillator
problem with a subspace of 2000 vectors.

this works is obtained by examining the projections of the filtered states onto the Lanczos
basis vectors. Figure 3 plots the squares of the expansion coefficients in the Lanczos basis
of four (renormalized) filtered states with mean energies at ca. 0.3, 0.6, 0.9, and 1.2 eV. It
is apparent that solution of the MINRES equations yields filtered states with a bias toward
the earlier part of the Lanczos subspace. For clarity of presentation, we have not shown
the squares of the expansion coefficients beyond 450 Lanczos basis vectors: the remaining
projections out to the full order of the subspace of 2000 vectors used in the Morse oscillator
calculation are uniformly zero for all four filtered states. The reason for this is associated
with the fact that the LQ decomposition ofTk proceeds iteratively from left to right across
the columns of the matrix, with the solution to the linear system of equations defining the

FIG. 3. Plot of the squares of the expansion coefficients of filtered states with respect to the Lanczos basis
vectors for the Morse oscillator problem. The four filtered states shown were generated by solution of the MINRES
equations with shift energies of 0.30, 0.60, 0.90, and 1.20 eV.
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FIG. 4. Plot of the squares of the expansion coefficients of MFD eigenstates with respect to the Lanczos basis
vectors. The four eigenstates occur at 0.30100, 0.60828, 0.89645, and 1.19655 eV.

“best” approximation to the action of the Green operator being updated correspondingly.
As the residual norm for the linear system decreases, so the weighting of new Lanczos
subspace vectors in the solution is decreased. Finally, when the residual norm for the linear
system has dropped below machineε, any further Lanczos basis vectors introduced are
effectively ignored.

The practical importance of the above observation is that the solution of the linear system
of equations defining the action of the Green operatorG(E) converges with approximately
the same number of Lanczos iterations as do the eigenvalues in this region of the spectrum.
As the Lanczos subspace is extended further, loss of orthogonality causes unwanted com-
ponents in the direction of previously converged eigenvectors to be reintroduced into the
subspace. The MINRES algorithm ignores these, but the regular Lanczos algorithm is not
as discerning: straightforward diagonalization ofTk yields duplicate or ghost eigenvalues
and eigenvectors containing amplitude throughout the Lanczos subspace. This bias of the
MINRES algorithm toward the early part of the Lanczos subspace (without loss of accu-
racy) propagates through the singular value decomposition and diagonalization stages of
the MFD algorithm, so that the final eigenvectors likewise contain amplitude only in that
part of the Lanczos subspace that is required for an accurate solution. This is indicated in
Fig. 4, where we plot the squares of the expansion coefficients of four MFD eigenstates in
the Lanczos subspace, again corresponding to energies of approximately 0.3, 0.6, 0.9, and
1.2 eV. Hence, the MINRES algorithm provides a very convenient way of incorporating
only that part of the Lanczos subspace required for accurate convergence of eigenstates in
a given part of the spectrum.

Of course, the same final results can be achieved manually (and more laboriously) by
progressively examining the Lanczos spectrum as a function of the number of iterations and
picking out the true eigenvalues and eigenvectors as they converge, before the eigenvectors
become corrupted due to ghosting. Our point, however, is to illustrate that the MFD algorithm
appears to provide a very convenient means of reducing the amount of labor involved, and
also the amount of user expertise required, to achieve results of at least the same accuracy.
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IV. APPLICATION TO DENSE SPECTRA

As a further illustration of the utility of the MFD algorithm, we have applied it to a flexible
model Hamiltonian first suggested by Wyatt [19] in order to test the layered iteration method
for the calculation of interior eigenvalues of large matrices. It has also been utilized by
Kouri and co-workers [14] in testing a filter diagonalization algorithm based on Chebychev
expansion of the Green operator. The matrix exhibitsNb bands of eigenvalues withNs

states within each band. The zero-order diagonal energies are chosen to lie in the interval
[0, 1], so that the average spacing between successive states is 1/(NbNs). Four parameters
(1, δ, C, nod)may be adjusted to control the effective coupling between states. The coupling
within each band is specified to be relatively strong while the interband coupling is weaker.
The Hamiltonian is defined by the diagonal elements(i = i ′, j = j ′),

Hi j ,i j = (i − 1)1 + ( j − 1)δ, where δ ¿ 1, (6)

the intraband coupling terms(i = i ′, j 6= j ′),

Hi j ,i j ′ = C exp(−| j − j ′|), (7)

and the interband coupling terms(i 6= i ′, j 6= j ′),

Hi j ,i ′ j ′ = C exp(−| j − j ′|)
nod[|i − i ′| + 1]

, (8)

wherei denotes the band index,i = 1, 2, . . . , Nb, and j denotes the substate index,j = 1,

2, . . . , Ns. The parameters of Eqs. (6)–(8) areNb = 10, Ns = 200, 1= 0.10, δ = 0.0001,
C = 0.10, andnod = 5, forming a 2000× 2000 matrix. The exact spectrum can be obtained
by directly diagonalizing the Hamiltonian.

For the flexible model Hamiltonian described, we carried out 30,000 Lanczos iterations
starting from a uniform initial vector. MFD calculations for several energy windows covering
the spectrum were performed. In the interest of brevity, we present results only for a window
in the middle of the spectrum (Figs. 5–7). The lower frame in Fig. 5 shows the stick spectrum
obtained from an MFD calculation utilizingNMFD = 400 evenly spaced shifts spanning the
eigenvalue range 0.4252 to 0.5050. This calculation yielded 169 true eigenvalues which
correspond to the 931st through the 1099th eigenstates of the matrix. As in Fig. 1, the
height of the sticks is indicative of the dispersion of the corresponding eigenvectors (the
shorter the stick, the larger the dispersion). In the upper frame of Fig. 5, we have plotted
only the 16 spurious eigenvalues obtained in this part of the spectrum from the Lanczos
calculation (i.e., excluding the many copies of true eigenvalues). Note that theY scale is
different for the lower and upper frames of Fig. 5. The dispersions of the MFD eigenstates
are illustrated quantitatively in Fig. 6 on a log scale. In Fig. 7 the multiplicities of duplicate
eigenvalues obtained from the diagonalization ofT30,000 are plotted. The figure illustrates
well-understood Lanczos convergence properties: many more duplicate eigenvalues are
obtained in the sparse parts of the spectrum, since the Lanczos algorithm converges these
eigenstates more quickly [3]. Again, we stress that duplicate and spurious eigenvalues are
completely eliminated in the MFD calculations.
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FIG. 5. Plot of eigenvalues at the middle region of the spectrum of the Wyatt test matrix calculated via the
MFD technique (lower panel) and spurious states from the simple Lanczos method (upper panel). Shown are
169 states corresponding to the 931st through the 1099th eigenvalues of the full matrix. Both Lanczos and MFD
calculations are based on a Lanczos subspace of order 30,000.

FIG. 6. Plot of the log deviations of eigenvalues calculated using the MFD technique relative to the eigenstates
obtained by direct diagonalization of the Wyatt test matrix. The energy window is as in Fig. 5.

FIG. 7. Plot of the multiplicity of duplicated eigenvalues in the Lanczos spectrum for the Wyatt test matrix
with a subspace of 30,000 vectors.
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V. CONCLUSION

Clearly, the Lanczos subspaces which were generated in the two examples of this paper
(order 2000 for the Morse oscillator and order 30,000 for the Wyatt test matrix) constitute
overkill if one simply wishes to compute the eigenstates! With subspaces of this size, not
only are all eigenvalues correctly obtained by the Lanczos algorithm, but many copies
thereof as indicated in Figs. 2 and 7. We have illustrated in earlier work that a combination
of MINRES spectral filtering [23] and filter diagonalization [17] does provide an extremely
efficient method for extracting interior eigenvalues of a dense spectrum. Our focus in this
paper, however, has been to explain the intriguing and potentially very useful fact that the
MFD algorithm eliminates the spurious and duplicate eigenvalues which complicate the
interpretation of a regular Lanczos spectrum. We have shown that this is principally due
to the convergence properties of the MINRES equations which we use for constructing
filtered states by approximating the action of the Green operator. Only that part of the
Lanczos subspace which is required for convergence of the linear system of equations
defining the action of the Green operator at the specified energy is incorporated into the
solution, and the remaining Lanczos basis vectors are automatically ignored. This behavior
stems from the iterative LQ factorization of the tridiagonalTk in the Lanczos subspace
which is used to solve the linear system [18].

For eigenvalue problems involving very large sparse Hermitian matrices, such as the
calculation of high-lying rovibrational eigenstates of molecular Hamiltonians, the major
computing cost in a Lanczos calculation is the matrix-vector multiples required to generate
the subspace. Hence, the computational overhead associated with the MFD procedure is
minimal. We believe that, due to its enhanced convergence properties and the elimination
of the ghosting problem, the MFD technique has the potential to greatly facilitate such
calculations in the future.
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